Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.08.12.503750

ABSTRACT

Entry of enveloped viruses in host cells requires the fusion of the viral and host cell membranes, a process that is facilitated by viral fusion proteins protruding from the viral envelope. For fusion, viral fusion proteins need to be triggered by host factors and for some viruses, such as Ebola virus (EBOV) and Lassa fever virus, this event occurs inside endosomes and/or lysosomes. Consequently, these late-penetrating viruses must be internalized and delivered to entry-conducive intracellular vesicles. Because endocytosis and vesicular trafficking are tightly regulated cellular processes, late penetrating viruses also depend on specific host factors, such as signaling molecules, for efficient viral delivery to the site of fusion, suggesting that these could be targeted for antiviral therapy. In this study, we investigated a role for sphingosine kinases (SKs) in viral entry and found that chemical inhibition of sphingosine kinase 1 (SK1) and/or SK2 and knockdown of SK1 or SK2, inhibited entry of EBOV into host cells. Mechanistically, inhibition of SK1 and/or SK2 prevented EBOV from reaching late-endosomes and lysosomes that are positive for the EBOV receptor, Niemann Pick C1 (NPC1). Furthermore, we present evidence that suggests the trafficking defect caused by SK1/2 inhibition occurs independently of S1P signaling through cell-surface S1PRs. Lastly, we found that chemical inhibition of SKs prevents entry of other late-penetrating viruses, including arenaviruses and coronaviruses, in addition to inhibiting infection by replication competent EBOV and SARS-CoV-2 in Huh7.5 cells. In sum, our results highlight an important role played by SKs in endocytic trafficking which can be targeted to inhibit entry of late-penetrating viruses. SK inhibitors could serve as a starting point for the development of broad-spectrum antiviral therapeutics.


Subject(s)
Fever , Hemorrhagic Fever, Ebola
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.22.481551

ABSTRACT

Wildlife reservoirs of SARS-CoV-2 can lead to viral adaptation and spillback from wildlife to humans (Oude Munnink et al., 2021). In North America, there is evidence of spillover of SARS-CoV-2 from humans to white-tailed deer (Odocoileus virginianus), but no evidence of transmission from deer to humans (Hale et al., 2021; Kotwa et al., 2022; Kuchipudi et al., 2021). Through a multidisciplinary research collaboration for SARS-CoV-2 surveillance in Canadian wildlife, we identified a new and highly divergent lineage of SARS-CoV-2. This lineage has 76 consensus mutations including 37 previously associated with non-human animal hosts, 23 of which were not previously reported in deer. There were also mutational signatures of host adaptation under neutral selection. Phylogenetic analysis revealed an epidemiologically linked human case from the same geographic region and sampling period. Together, our findings represent the first evidence of a highly divergent lineage of SARS-CoV-2 in white-tailed deer and of deer-to-human transmission.

3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.19.481107

ABSTRACT

To infect cells, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) binds to angiotensin converting enzyme 2 (ACE2) via its spike glycoprotein (S), delivering its genome upon S-mediated membrane fusion. SARS-CoV-2 uses two distinct entry pathways: 1) a surface, serine protease-dependent or 2) an endosomal, cysteine protease-dependent pathway. In investigating serine protease-independent cell-cell fusion, we found that the matrix metalloproteinases (MMPs), MMP2/9, can activate SARS-CoV-2 S fusion activity, but not that of SARS-CoV-1. Importantly, metalloproteinases activation of SARS-CoV-2 S represents a third entry pathway in cells expressing high MMP levels. This route of entry required cleavage at the S1/S2 junction in viral producer cells and differential processing of variants of concern S dictated its usage. In addition, metalloproteinase inhibitors reduced replicative Alpha infection and abrogated syncytia formation. Finally, we found that the Omicron S exhibit reduced metalloproteinase-dependent fusion and viral entry. Taken together, we identified a MMP2/9-dependent mode of activation of SARS-CoV-2 S. As MMP2/9 are released during inflammation and severe COVID-19, they may play important roles in SARS-CoV-2 S-mediated cytopathic effects, tropism, and disease outcome.


Subject(s)
Coronavirus Infections , Infections , Severe Acute Respiratory Syndrome , COVID-19 , Inflammation
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.27.22269922

ABSTRACT

Regional connectivity and land-based travel have been identified as important drivers of SARS-CoV-2 transmission. However, the generalizability of this finding is understudied outside of well-sampled, highly connected regions such as Europe. In this study, we investigated the relative contributions of regional and intercontinental connectivity to the source-sink dynamics of SARS-CoV-2 for Jordan and the wider Middle East. By integrating genomic, epidemiological and travel data we show that the source of introductions into Jordan was dynamic across 2020, shifting from intercontinental seeding from Europe in the early pandemic to more regional seeding for the period travel restrictions were in place. We show that land-based travel, particularly freight transport, drove introduction risk during the period of travel restrictions. Consistently, high regional connectivity and land-based travel also disproportionately drove Jordan's export risk to other Middle Eastern countries. Our findings emphasize regional connectedness and land-based travel as drivers of viral transmission in the Middle East. This demonstrates that strategies aiming to stop or slow the spread of viral introductions (including new variants) with travel restrictions need to prioritize risk from land-based travel alongside intercontinental air travel to be effective.

5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.20.473401

ABSTRACT

Nanobodies offer several potential advantages over mAbs for the control of SARS-CoV-2. Their ability to access cryptic epitopes conserved across SARS-CoV-2 variants of concern (VoCs) and feasibility to engineer modular, multimeric designs, make these antibody fragments ideal candidates for developing broad-spectrum therapeutics against current and continually emerging SARS-CoV-2 VoCs. Here we describe a diverse collection of 37 anti-SARS-CoV-2 spike glycoprotein nanobodies extensively characterized as both monovalent and IgG Fc-fused bivalent modalities. The panel of nanobodies were shown to have high intrinsic affinity; high thermal, thermodynamic and aerosolization stability; broad subunit/domain specificity and cross-reactivity across many VoCs; wide-ranging epitopic and mechanistic diversity; high and broad in vitro neutralization potencies; and high neutralization efficacies in hamster models of SARS-CoV-2 infection, reducing viral burden by up to six orders of magnitude to below detectable levels. In vivo protection was demonstrated with anti-RBD and previously unreported anti-NTD and anti-S2 nanobodies. This collection of nanobodies provides a therapeutic toolbox from which various cocktails or multi-paratopic formats could be built to tackle current and future SARS-CoV-2 variants and SARS-related viruses. Furthermore, the high aerosol-ability of nanobodies provides the option for effective needle-free delivery through inhalation.


Subject(s)
COVID-19
6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.16.21260079

ABSTRACT

Antibodies raised against highly prevalent human seasonal coronaviruses (sCoVs), which are responsible for the common cold, are known to cross-react with SARS-CoV-2 antigens. This cross-reactivity prompts questions about their protective role against SARS-CoV-2 infections and COVID-19 disease severity. However, the relationship between sCoV exposure and SARS-CoV-2 correlates of protection have not been clearly identified. Here we performed a cross-sectional analysis of cross-reactivity and cross-neutralization to three SARS-CoV-2 antigens using pre-pandemic serum from four different groups: pediatrics and adolescents (<21 yrs of age), persons 21 to 70 yrs of age, persons older than 70 yrs of age, and persons living with HCV or HIV. We find that antibody cross-reactivity to SARS-CoV-2 antigens varied between 1.6% and 15.3% depending on the cohort and the isotype-antigen pair analyzed. We also demonstrate a broad range of neutralizing activity (0-45%) in pre-pandemic serum that interferes with SARS-CoV-2 spike attachment to ACE2. While the abundance of sCoV antibodies did not directly correlate with neutralization efficiency, by using machine learning methodologies, we show that neutralizing activity is rather dependent on the latent variables related to the pattern ratios of sCoVs antibodies presented by each person. These were independent of age or sex, and could be accurately predicted by comparing the relative ratios of IgGs in sera directed to NL63, 229E, HKU-1, and OC43 spike proteins. More specifically, we identified antibodies to NL63 and OC43 as being the two most important predictors of latent variables responsible for protection, and 229E as being the least weighted. Our data support that exposure to sCoVs triggers various cellular and immune responses that influence the efficiency of SARS-CoV-2 spike binding to ACE2, and may impact COVID-19 disease severity through various other latent variables.


Subject(s)
HIV Infections , Severe Acute Respiratory Syndrome , COVID-19 , Hepatitis C
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.03.409714

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a genome comprised of a ~30K nucleotides non-segmented, positive single-stranded RNA. Although its RNA-dependent RNA polymerase exhibits exonuclease proofreading activity, viral sequence diversity can be induced by replication errors and host factors. These variations can be observed in the population of viral sequences isolated from infected host cells and are not necessarily reflected in the genome of transmitted founder viruses. We profiled intra-sample genetic diversity of SARS-CoV-2 variants using 15,289 high-throughput sequencing datasets from infected individuals and infected cell lines. Most of the genetic variations observed, including C->U and G->U, were consistent with errors due to heat-induced DNA damage during sample processing, and/or sequencing protocols. Despite high mutational background, we confidently identified intra-variable positions recurrent in the samples analyzed, including several positions at the end of the gene encoding the viral S protein. Notably, most of the samples possesses a C->A missense mutation resulting in the S protein lacking the last 20 amino acids (S{Delta}20). Here we demonstrate that S{Delta}20 exhibits increased cell-to-cell fusion and syncytia formations. Our findings are suggestive of the consistent emergence of high-frequency viral quasispecies that are not horizontally transmitted but involved in intra-host infection and spread. Author summaryThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated disease, COVID-19, has caused significant worldwide mortality and unprecedented economic burden. Here we studied the intra-host genetic diversity of SARS-CoV-2 genomes and identified a high-frequency and recurrent non-sense mutation yielding a truncated form of the viral spike protein, in both human COVID-19 samples and in cell culture experiments. Through the use of a functional assay, we observed that this truncated spike protein displays an elevated fusogenic potential and forms syncytia. Given the high frequency at which this mutation independently arises across various samples, it can be hypothesized that this deletion mutation provides a selective advantage to viral replication and may also have a role in pathogenesis in humans.


Subject(s)
Coronavirus Infections , Neointima , COVID-19 , Intraabdominal Infections
SELECTION OF CITATIONS
SEARCH DETAIL